

Б.И. Каторгин, Г.В. Осипов, В.Н. Серебряков, А.Л. Лапидус

«СИНТЕЗ»

ТЕХНОЛОГИЯ ПЕРЕРАБОТКИ ПРОМЫШЛЕННЫХ ВЫБРОСОВ СО₂ В ПРОДУКТЫ ОРГАНИЧЕСКОГО СИНТЕЗА

ISBN 978-5-7556-0494-9

Б.И.Каторгин, Г.В.Осипов, В.Н.Серебряков, А.Л.Лапидус. «Синтез». Технология переработки промышленных выбросов CO_2 в продукты органического синтеза. – М.: ИСПИ РАН, 2013. – 25 с.

Научное издание

Работа выполнена в рамках Программы фундаментальных исследований Президиума Российской академии наук «ЭКОНОМИКА И СОЦИОЛОГИЯ ЗНАНИЯ»

При подготовке книги к печати использованы отчеты по Программе фундаментальных исследований Президиума РАН «ЭКОНОМИКА И СОЦИОЛОГИЯ ЗНАНИЯ», материалы ИНПК «Союз технологий» и ИОХ РАН им. Н.Д.Зелинского, Института перспективных научных исследований, а также авторские материалы директора ИПНИ д.э.н. Л.С.ЧЕРНОГО

Организационно-техническая поддержка: заместитель директора ИПНИ А.Б.КАТОРГИН, заместитель директора ИСПИ РАН С.Г.КАРЕПОВА

В брошюре представлена инновационная технология по переработке промышленных выбросов CO_2 в продукты органического синтеза. Предложенная технология «Синтез» позволяет перейти к безотходному производству и решить проблему сокращения выбросов диоксида углерода в атмосферу Земли, тем самым уменьшить влияние избытка парникового газа на климат и существенно повысить уровень здоровья нации.

Цель настоящего издания ознакомить широкую общественность, органы государственной власти, деловые круги России, с уникальной технологией позволяющей решать многие экологические, социальные, экономические проблемы страны.

ISBN 978-5-7556-0494-9

© ИСПИ РАН, 2013, ИПНИ, 2013

Предисловие

Проблема изменений климата выдвинулась в первый ряд глобальных вызовов XXI века и приоритетов международной повестки дня. Она выходит далеко за рамки чисто научного вопроса и по своей сути представляет комплексную междисциплинарную проблему, охватывающую все ключевые аспекты устойчивого развития – экологические, экономические и социальные.

Климатическая доктрина Российской Федерации

елью проекта «СИНТЕЗ» является сокращение техногенной эмиссии диоксида углерода, осуществляемое на основе его рентабельной переработки в продукты органического синтеза, т.е. технически и технологически создается круговорот углерода, подобный природному.

Прогрессирующий рост содержания диоксида углерода в атмосфере Земли (40% за 150 лет) свидетельствует о нарушении равновесия между скоростью выделения CO_2 в атмосферу и его поглощения зелеными растениями Земли в природном круговороте углерода.

Современная мировая техногенная эмиссия диоксида углерода достигает 25 млрд т в год с перспективой до 36 млрд т в год к 2020 г., что уже составляет более 7% величины природного круговорота углерода. Это является заметным возмущающим фактором в динамике атмосферных процессов и климатических изменений в результате действия «парникового» эффекта.

В общем объеме антропогенной эмиссии «парниковых» газов порядка 70% составляют выбросы промышленности и ТЭК.

Страны Большой восьмерки (Россия, США, Великобритания, Италия, Франция, Япония, Германия и Канада) в первый день саммита 8 июля 2009 г. приняли заявление по климату, в котором поставили глобальную цель сократить по меньшей мере на 50% к 2050 г. выбросы парниковых газов.

Принятые документы предусматривают меры по повышению эффективности использования и ресурсосбережения невозобновляемых природных запасов углеводородов в промышленности и отраслях народного хозяйства, разработку мер по регулированию техногенной эмиссии и поглощению парниковых газов атмосферы.

Проблема утилизации CO₂ обязательно должна быть решена при создании новых кластеров по переработке углей в синтетическое топливо, так как крупнотоннажным отходом, образующимся в процессе гидрогенизации углей, является углекислый газ, который в настоящее время либо выбрасывается в атмосферу (как в России), либо закачивается в подземные хранилища (как в КНР). Утилизация образующегося углекислого газа позволит не только улучшить экологическую ситуацию в регионе размещения кластера, но и повысить рентабельность вновь создаваемых производств.

В разработанной инновационной технологии проекта диоксид углерода промышленных выбросов выступает как сырьё для производства жидких синтетических энергоносителей с улучшенными экологическими качествами (диметиловый эфир, высокооктановый бензин, высокоцетановое дизельное топливо стандарта «Евро-4» и т.д.).

Физико-химические основы процессов восстановления диоксида углерода и воды изучены в рамках фундаментальных НИР по созданию замкнутых систем регенерации кислорода для жизнеобеспечения экипажа в длительных космических полетах, выполненных авторами проекта в РКК «Энергия» им. С.П.Королева с участием Института электрохимии РАН, Института высокотемпературной электрохимии УНЦ СО РАН, ГНЦ РФ «Институт Курчатова» и др.

Основные процессы базовой технологии представленного проекта разработаны и экспериментально исследованы в рамках фундаментальных НИР по грантам РФФИ, выполненных в совместных работах Инвестиционной научно-промышленной корпорации «Союз технологий», Института органической химии им. Н.Д.Зелинского и Института перспективных научных исследований при ООН РАН.

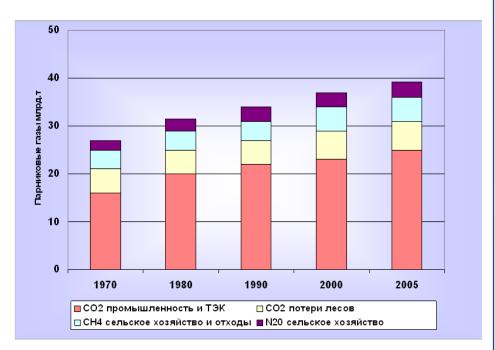
Институтом перспективных научных исследований при Отделении общественных наук РАН разработан предэскизный проект создания опытно-промышленного комплекса переработки диоксида уг-

лерода мощностью 5000 т углеводородов в год (ОПК-5000) при участии ИНПК ЗАО «Союз технологий», ГНЦ РФ «НИФХИ им. Л.Я.Карпова, Института органической химии им. Н.Д.Зелинского РАН, ОАО «Уралхиммаш», ОАО «НИИХИММАШ», а также технико-экономическое обоснование рентабельности производства продуктов органического синтеза из диоксида углерода, подтвержденное Центральным экономико-математическим институтом РАН.

Таким образом, на сегодняшний день отработаны основы технологии, определен состав аппаратуры, узлов и агрегатов технологической линии для крупнотоннажной переработки ${\rm CO}_2$.

«СИНТЕЗ»

ТЕХНОЛОГИЯ ПЕРЕРАБОТКИ ПРОМЫШЛЕННЫХ ВЫБРОСОВ ${\rm CO_2}$ В ПРОДУКТЫ ОРГАНИЧЕСКОГО СИНТЕЗА


- Проект «Синтез» имеет своей целью использовать диоксид углерода, производимый в антропогенных процессах, для получения экономически эффективным способом востребованных на рынке продуктов химической промышленности. При этом решается одна из важнейших проблем экологии, а именно утилизируется парниковый газ, вырабатываемый промышленными предприятиями и тепловыми электростанциями.
- Таким путем может быть решена глобальная проблема по уменьшению выбросов CO₂ в атмосферу Земли.

ГЛОБАЛЬНАЯ ЭКОЛОГИЧЕСКАЯ ПРОБЛЕМА

- Прогрессирующий рост содержания диоксида углерода в атмосфере Земли (40% за 150 лет) свидетельствует о нарушении равновесия между скоростью выделения СО₂ в атмосферу и его поглощения зелеными растениями Земли в природном круговороте углерода.
- Современная мировая техногенная эмиссия диоксида углерода достигает 25 млрд т в год с перспективой до 36 млрд т в год к 2020 г., что уже составляет более 7% величины природного круговорота углерода. Это является заметным возмущающим фактором в динамике атмосферных процессов и климатических изменений в результате действия «парникового» эффекта.

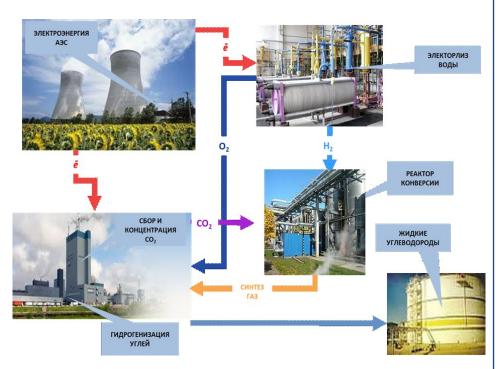
РОСТ ВЫБРОСОВ «ПАРНИКОВЫХ» ГАЗОВ

■ Из диаграммы видно, что в общем объеме антропогенной эмиссии «парниковых» газов порядка 70% составляют выбросы промышленности и ТЭК.

МЕЖДУНАРОДНОЕ ПРИЗНАНИЕ ПРОБЛЕМЫ

- Страны Большой восьмерки (Россия, США, Великобритания, Италия, Франция, Япония, Германия и Канада) в первый день саммита 8 июля 2009 г. приняли заявление по климату, в котором поставили глобальную цель сократить по меньшей мере на 50% к 2050 г. выбросы парниковых газов.
- Принятые документы предусматривают меры по повышению эффективности использования и ресурсосбережения невозобновляемых природных запасов углеводородов в промышленности и отраслях народного хозяйства, разработку мер по регулированию техногенной эмиссии и поглощению парниковых газов атмосферы.

Интегральная Евразийская инфраструктурная система как приоритет национального развития страны


ПОСЛЕДСТВИЯ «ПАРНИКОВОГО» ЭФФЕКТА

- Рост числа опустошительных ураганов.
- Опустынивание и заболачивание плодородных земель.
- Ускорение таяния полярных льдов с угрозой затопления наиболее заселенных и хозяйственно освоенных регионов Земли.
- Деформация мерзлотных грунтов с угрозой техногенных катастроф.
- Раскрытие под действием теплоты газогидратных месторождений: массированная эмиссия метана в атмосферу придаст глобальному потеплению взрывной характер.
 - Общее ухудшение условий жизни людей.

ВАРИАНТЫ РЕШЕНИЯ ПРОБЛЕМЫ

- Переход на альтернативные энергетические технологии (ядерные, солнечные, ветровые, приливные, геотермальные и т.д.).
- <u>Основной недостаток:</u> пока обеспечивают менее 20% мирового потребления энергии.
- Сокращение эмиссии диоксида углерода тепловыми электростанциями и предприятиями.
- <u>Основной недостаток:</u> существующие способы сложны технологически и невыгодны экономически.
- Улавливание диоксида углерода с его последующим захоронением в подземных или подводных хранилищах.
- <u>Основной недостаток:</u> масштабные непроизводственные затраты; отсутствие решения вопроса по существу и его откладывание на будущее.

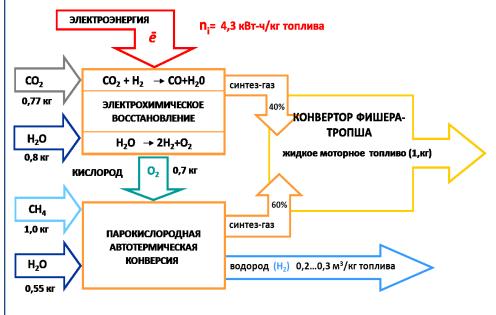
<u>ПРИМЕР ПРОМЫШЛЕННОГО ПРИМЕНЕНИЯ</u> ТЕХНОЛОГИИ УТИЛИЗАЦИИ ДИОКСИДА УГЛЕРОДА

ПРЕИМУЩЕСТВА ПРОЕКТА «СИНТЕЗ»

- Сокращение техногенной эмиссии диоксида углерода осуществляется на основе его рентабельной переработки в продукты органического синтеза.
- Технически создается круговорот углерода, подобный природному.
- В разработанной инновационной технологии проекта диоксид углерода промышленных выбросов выступает как сырьё для производства жидких синтетических энергоносителей с улучшенными экологическими качествами (диметиловый эфир, высокооктановый бензин, высокоцетановое дизельное топливо и т.д.).

//нтегральная Евразийская инфраструктурная система как приоритет национального развития страны

ЦЕЛИ ПРОЕКТА «СИНТЕЗ»

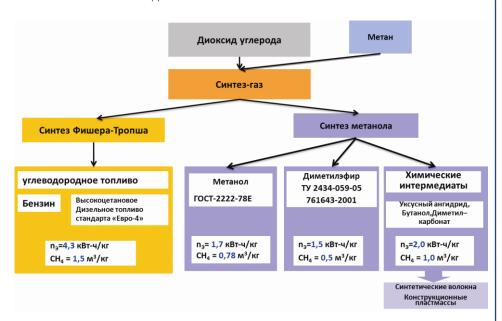

Данная технология позволяет комплексно решить задачи:

- регулирования промышленной эмиссии диоксида углерода;
- сокращения потребления и сбережения природных ресурсов углеводородов.

Особенностью технологии является создание механизма сокращения эмиссии диоксида углерода, не требующего наложения дополнительных ограничений на темпы промышленного развития.

ОСНОВНЫЕ ПРОЦЕССЫ ТЕХНОЛОГИИ

ЭНЕРГЕТИЧЕСКИЕ И МАТЕРИАЛЬНЫЕ РАСХОДЫ НА ПРОИЗВОДСТВО 1 КГ ТОПЛИВА1



 $^{^1}$ Данная информация является собственностью авторов. Использование материалов разрешается только с согласия авторов.

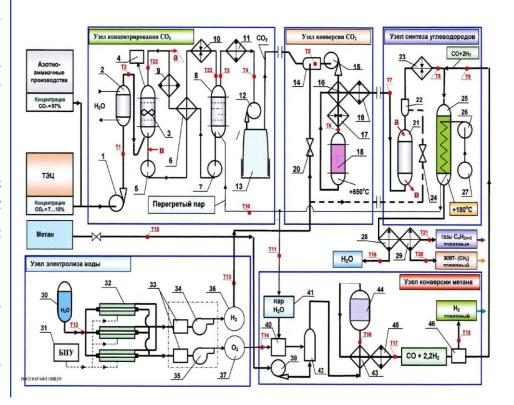
«Синтез». Технология переработки промышленных выбросов СО₂в продукты органического синтеза

<u>АЛЬТЕРНАТИВНЫЕ ВИДЫ ПРОДУКЦИИ ТЕХНОЛОГИИ «СИНТЕЗ»</u> И УДЕЛЬНЫЕ ЭНЕРГОЗАТРАТЫ **n**_i

НА ПОЛУЧЕНИЕ 1 КГ ПРОДУКТА

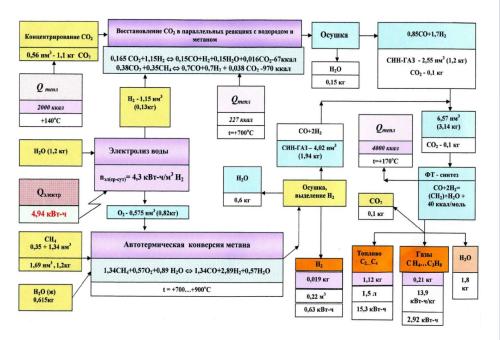
ОСНОВНЫЕ СТАДИИ ТЕХНОЛОГИИ

- Получение диоксида углерода в относительно чистом виде до 95–97% из сбросов азотно-химических, пищевых, металлургических производств, либо абсорбционным концентрированием из продуктов сгорания (дымов ТЭК), содержащих 8–12% диоксида углерода.
- Восстановление диоксида углерода и воды до получения водорода и оксида углерода, т.е. синтез-газа, в параллельных процессах электролиза воды и химико-каталитического восстановления диоксида углерода.
- Утилизация полученного при электролизе воды кислорода в параллельном процессе автотермической парокислородной конверсии метана.
- Синтез углеводородов на основе процессов в реакторах Фишера—Тропша.


ОСОБЕННОСТИ ЭНЕРГЕТИЧЕСКИХ ПОКАЗАТЕЛЕЙ ТЕХНОЛОГИИ «СИНТЕЗ»

Особенностью технологии «Синтез» является высокая термодинамическая эффективность:

- на производство 1 кг жидкого моторного топлива с энергосодержанием около 13 кВт-ч расходуется 4,3 кВт-ч электроэнергии и 1 кг метана;
- на производство 1 кг диметилэфира с энергосодержанием 8 кВт-ч расходуется 2 кВт-ч электроэнергии и 0,71 кг метана.


ПРИНЦИПИАЛЬНАЯ СХЕМА

ЛИНИИ ПЕРЕРАБОТКИ ДИОКСИДА УГЛЕРОДА И КОНВЕРСИИ МЕТАНА

Интегральная Евразийская инфраструктурная система как приоритет национального развития страны

ЭНЕРГЕТИЧЕСКИЕ И МАТЕРИАЛЬНЫЕ БАЛАНСЫ ПРОЦЕССОВ ТЕХНОЛОГИИ «СИНТЕЗ»¹

ЭКСПЕРИМЕНТАЛЬНАЯ ОТРАБОТКА

- Физико-химические основы процессов восстановления диоксида углерода и воды изучены в рамках фундаментальных НИР по созданию замкнутых систем регенерации кислорода для жизнеобеспечения экипажа в длительных космических полетах, выполненных авторами проекта в:
 - РКК «Энергия» им. С.П.Королева;
 - О Институте электрохимии РАН;
 - Институте высокотемпературной электрохимии УНЦ СО РАН;
 - ГНЦ РФ «Институт Курчатова» и др.

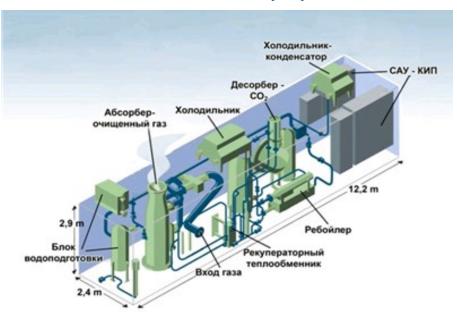
¹ Данная информация является собственностью авторов. Использование материалов разрешается только с согласия авторов.

Интегральная Евразийская инфраструктурная система как приоритет национального развития страны

- Основные процессы базовой технологии представленного проекта разработаны и экспериментально исследованы в рамках фундаментальных НИР по проектам РФФИ и ИПНИ, выполненных в совместных работах ИНПК «Союз технологий» и Института органической химии им. Н.Д.Зелинского включая:
 - о исследования равновесий и кинетики процессов;
- О создание высокоселективных катализаторов химических реакций;
- о поиск и разработку оптимальных режимных параметров процессов;
- О опытно-конструкторскую разработку стендовых химических реакторов; исследования динамики реакторных процессов технологии на экспериментальных стендах.

ЭКСПЕРИМЕНТАЛЬНАЯ ОТРАБОТКА

ПРОЦЕССОВ ТЕХНОЛОГИИ ПРЕОБРАЗОВАНИЯ ДИОКСИДА УГЛЕРОДА В БЕНЗИНОВОЕ И ДИЗЕЛЬНОЕ ТОПЛИВО НА СТЕНДОВЫХ УСТАНОВКАХ



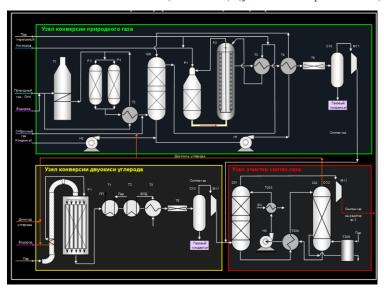
<u>ПРОМЫШЛЕННАЯ ОСВОЕННОСТЬ</u> СТАДИЙ ТЕХНОЛОГИИ

- Технология концентрирования диоксида углерода из дымовых газов является промышленно освоенной, как основной источник товарного диоксида углерода.
- Практически весь объём диоксида углерода, получаемого и используемого для нужд пищевой промышленности, агротепличных производств и промышленных технологических процессов около 1 млн т СО₂ в год, производится путём извлечения его в практически чистом виде из сбросных газов химических комбинатов по производству аммиака и удобрений, комбинатов нефтехимической переработки и спиртопищевых комбинатов или путём абсорбционного извлечения и концентрирования СО₂ из дымовых газов объектов теплоэнергетики.
- \bigcirc Недоиспользуемые ресурсы указанных промышленных источников концентрированного диоксида углерода по России составляют до 15 млн т CO_2 в год.
- Конверсия синтез-газа в углеводородное топливо процессом Фишера—Тропша или синтезом метанола являются освоенными технологиями промышленности органического синтеза.
- В мире освоен промышленный выпуск низкотемпературных электролизёров воды с жидким щелочным электролитом достаточной производительности.

ПИЛОТНЫЙ КОМПЛЕКС «СИНТЕЗ»

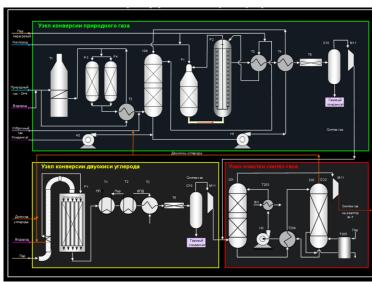
■ Узел концентрирования CO₂ На выходе — очищенный диоксид углерода CO₂.

■ Узел систем электролиза воды. На выходе — очищенные водород H₂ и кислород O₂.



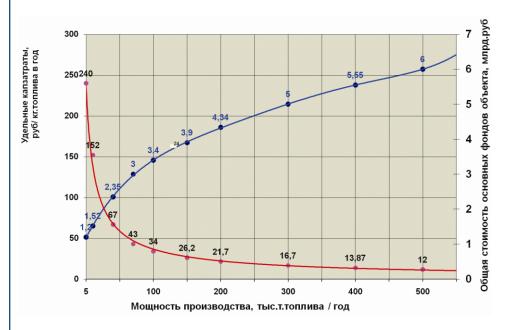
Интегральная Евразийская инфраструктурная система как приоритет национального развития страны

■ Узел конверсии метана и диоксида углерода.


На выходе — синтез-газ (CO + H_2) и водород H_2 (узел конверсии метана).

На выходе – синтез-газ ($CO + H_2$) (узел конверсии CO_2).

■ Узел синтеза углеводородов на базе реактора Фишера— Тропша.


На выходе – продукты органического синтеза (жидкие и газообразные углеводороды, моторное топливо) и др.

*И*нтегральная Евразийская инфраструктурная система как приоритет национального развития страны

- По своему составу и конфигурации многоцелевая технология «Синтез» имеет большой потенциал совершенствования как по элементной базе исполнения, так и по структуре в зависимости от конечного продукта и источников энергии.
- Таким образом, на сегодняшний день отработаны основы технологии, определен состав аппаратуры, узлов и агрегатов технологической линии.
- Расчеты показывают, что наиболее целесообразным, с точки зрения рентабельности, являются объемы производства на уровне от 100 до 500 тыс. т топлива в год.

ЗАВИСИМОСТЬ УДЕЛЬНЫХ КАПИТАЛЬНЫХ ЗАТРАТ **k** ОТ МОЩНОСТИ ПРОИЗВОДСТВА

Кривая на слайде показывает, что при увеличении мощности производства от 100 до 500 тыс. т топлива в год, т.е. в 5 раз, удельные капитальные затраты уменьшаются примерно в три раза, а стоимость основных фондов возрастают всего в 1,7 раза.

МАКРОЭКОНОМИЧЕСКИЙ ЭФФЕКТ ОТ ВНЕДРЕНИЯ ПРОЕКТА

■ Анализ моделей развития экономики России на период до 2015 г., выполненный Центральным экономико-математическим институтом РАН, показывает, что внедрение проекта «Синтез» может обеспечить дополнительный прирост ВВП России на 6,67% за указанный 8-летний период (см. диаграмму 1, диаграмму 2).

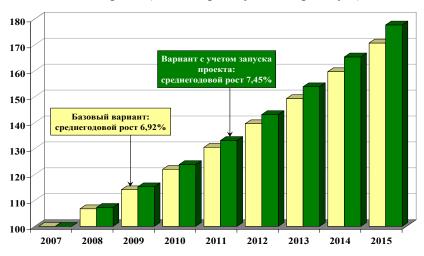
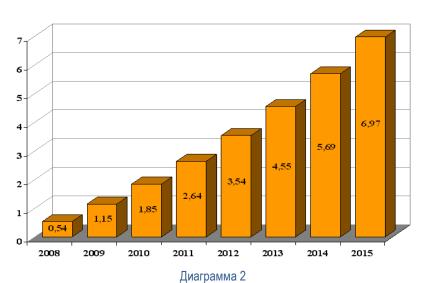



Диаграмма 1 Сравнительный прирост ВВП России с учетом запуска проекта «Синтез» в ценах базового периода, в % (2007 г. = 100%)

Дополнительный прирост ВВП России относительно базового варианта развития экономики, в %

■ Дополнительный прирост доходов на душу населения в номинальном выражении за 8 лет составляет 2,67% относительно базового варианта развития экономики (см. диаграмму 3).

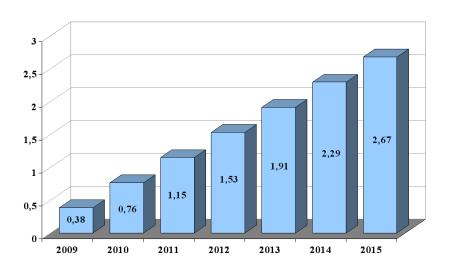


Диаграмма 3 Прирост показателя «доход на душу населения» в номинальном выражении относительно базового варианта развития экономики, в %

СОЦИАЛЬНЫЙ ЭФФЕКТ ОТ ВНЕДРЕНИЯ ПРОЕКТА

- Улучшение экологической обстановки и условий жизни людей.
- Снижение уровня заболеваний, косвенно связанных с повышенным содержанием в атмосфере «парниковых» газов.
- Создание технологии, позволяющей решить глобальную экологическую проблему, существенно укрепит авторитет России на международной арене и вернет ее народу обоснованную гордость за свою страну и социальный оптимизм.

СПРАВКА

по результатам исследований **модифицированной технологии** переработки диоксида углерода в жидкое углеводородное топливо – «Синтез»

- В 2009–2012 гг. продолжены исследования по дальнейшему совершенствованию энергоэкономических показателей технологии переработки диоксида углерода в жидкое углеводородное топливо на основе модифицированного процесса восстановления диоксида углерода до синтез-газа смесями водорода с метаном, а также смесями газообразных углеводородов метан, пропан, бутан, этан и т.п. (продуктами газификации бурых углей, сланцев и других видов твердого топлива).
- Целями исследований являлся поиск оптимальных режимных параметров процесса газовых составов исходной смеси, температур реакции и т.п., обеспечивающих:
 - ✓ максимальную степень конверсии диоксида углерода;
 - ✓ максимальный выход синтез-газа на единицу переработанного диоксида углерода;
 - ✓ минимизацию показателя удельных затрат электроэнергии на единицу производимого топлива;
 - ✓ минимизацию удельных затрат электроэнергии на единицу переработанного диоксида углерода, определяющего показатель экологической эффективности технологии, как потребителя электроэнергии из общей сети ЕЭС РФ.
 - Исследования выполнены во всем, практически значимом, диапазоне режимных параметров:
 - ✓ содержания водорода в исходной смеси от 1,0 до 3,0 ${\rm Hm}^3\,{\rm H}_2$ на 1 ${\rm Hm}^3$ перерабатываемого ${\rm CO}_2$;
 - ✓ объемного содержания добавок газообразного углеводорода (метана) от 5% до 40% в исходной смеси «диоксид углерода—водород—метан»;
 - ✓ температурного уровня реакции от 600 до 800 °C;
 - ✓ при использовании смесей газообразных углеводородов.
 - В исследованиях определялись основные параметры степень конверсии исходных газов, составы продуктов реакции, удельные выходы продуктов реакции.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

Установлено, что в оптимальных режимах разработанной модификации процесса по сравнению с первоначальным, базовым вариантом технологии (восстановления диоксида углерода чистым водородом) достигаются следующие эффекты по основным показателям.

- Степень конверсии диоксида углерода возрастает в 1,5—1,7 раза (до 93—95%) при равных температурных условиях процесса.
- Удельные выходы синтез-газа (на единицу переработанного CO₂) возрастают в 2,5–3 раза – до 4–5 нм³ синтез-газа на 1 нм³ диоксида углерода.
- Удельный расход водорода на получение синтез-газа (определяющий удельные энергозатраты на единицу получаемого жидкого топлива) снижается в 3–3,5 раза относительно базового. Соответственно возрастает выход синтез-газа в процессе восстановления; при этом общий выход с учетом дополнительного синтез-газа, образующегося в процессе утилизации электролизного кислорода, возрастает до 7 нм³ синтез-газа на 1 нм³ водорода. Данный выход соответствует снижению удельных затрат энергии до 4,0–4,2 кВт-ч/кг получаемого топлива, т.е. на 35–38% от базового варианта 6,5 кВт-ч/кг (при использовании существующих стандартных электролизеров воды с удельными затратами 5 кВт-ч/нм³ водорода).
- Удельный расход водорода (и соответственно электроэнергии) на восстановление диоксида углерода снижается в среднем в 2 раза до 0,7—0,79 нм³ водорода на 1 кг диоксида углерода. Данная величина соответствует удельному количеству переработанного диоксида углерода 0,252—0,285 кг СО₂ на 1 кВт-ч потребленной электроэнергии и практически перекрывает среднеинтегральную величину удельного выброса диоксида углерода всеми энергопроизводителями ЕЭС РФ (топливными и нетопливными) 0,28 кгСО₂/кВт-ч.
- Принципиальным выводом данного результата исследований является то, что технология «Синтез» в разработанной модификации может полностью перерабатывать выбросы диоксида углерода от производства потребляемой ею электроэнергии при питании от общей сети ЕЭС РФ в любом суточном режиме работы.

■ Исследования процесса с использованием тяжелых газообразных углеводородов (пропан, бутан) показывают некоторые особенности реакций, выражающиеся в более высокой степени конверсии этих газов в сравнении с метаном в силу более низкой энергии их молекулярных связей.

НЕОБХОДИМЫЕ УСЛОВИЯ ДЛЯ НАЧАЛА РЕАЛИЗАЦИИ ПРОЕКТА

- Учитывая новизну проблемы, до строительства крупных заводов по переработке СО₂ целесообразно построить опытную установку мощностью порядка 150 т моторного топлива в год для проведения работ по оптимизации параметров, уменьшения рисков и для демонстрации возможностей установки и рыночных показателей технологии.
 - Срок создания опытной установки 18 месяцев

исполнители:

- ИНПК «Союз технологий»;
- Институт органической химии им. Н.Д.Зелинского;
- АНО ИПНИ;
- ИСПИ РАН.

Содержание

Тредисловие	3
лобальная экологическая проблема	6
Рост выбросов «парниковых» газов	7
Леждународное признание проблемы	7
Тоследствия «парникового» эффекта	8
Варианты решения проблемы	8
Тример промышленного применения технологии утилизации диоксида углерода	9
Треимущества проекта «СИНТЕЗ»	9
Цели проекта «СИНТЕЗ»	10
Основные процессы технологии	10
Альтернативные виды продукции технологии «СИНТЕЗ» и удельные энергозатраты	11
Основные стадии технологии	11
Особенности энергетических показателей технологии «СИНТЕЗ»	12
Принципиальная схема линии переработки диоксида углерода и конверсии метана	12
Энергетические и материальные балансы процессов технологии «СИНТЕЗ»	13
Экспериментальная отработка	13
Экспериментальная отработка процессов технологии преобразования диоксида иглерода в бензиновое и дизельное топливо на стендовых установках	14
Промышленная освоенность стадий технологии	15
Тилотный комплекс «СИНТЕЗ»	16
Вависимость удельных капитальных затрат k от мощности производства	18
Лакроэкономический эффект от внедрения проекта	19
Социальный эффект от внедрения проекта	20
Результаты исследований	22
Необходимые условия для начала реализации проекта	23
Исполнители	23

Б.И.Каторгин, Г.В.Осипов, В.Н.Серебряков, А.Л.Лапидус «Синтез». Технология переработки промышленных выбросов ${\rm CO_2}$ в продукты органического синтеза

Научное издание

Подписано к печати 12.08.2013. Печать офсетная. Тираж 550 экз. Формат 70 х $100^{-1}/_{16}$. Усл. печ. л. 1,5. Уч.-изд. л. 0,6.

119991, Москва, Ленинский пр., 32A Контактный телефон: (495) 938 19 10